Default Image

Months format

View all

Load More

Related Posts Widget

Article Navigation

Contact Us Form

404

Sorry, the page you were looking for in this blog does not exist. Back Home

Ads Area

विश्लेषण : शून्य का आविष्कार और इसका इतिहास

शून्य की खोज मानव सभ्यता के सबसे महान आविष्कारों में से एक मानी जाती है। गणित, विज्ञान, खगोलशास्त्र और आधुनिक कंप्यूटर विज्ञान के क्षेत्र में शून्य के बिना कुछ भी संभव नहीं होता। लेकिन क्या आप जानते हैं कि शून्य की उत्पत्ति भारत में हुई थी? भारतीय गणितज्ञों ने न केवल शून्य की खोज की, बल्कि दशमलव प्रणाली और स्थानमान पद्धति को भी विकसित किया।


शून्य से पहले की अंक प्रणालियां

शून्य के आविष्कार से पहले दुनियाभर में अलग-अलग अंक प्रणालियां प्रचलित थीं।

  • माया सभ्यता में 20 अंकों की प्रणाली थी।
  • सिंधु घाटी सभ्यता में 9 अंकों की प्रणाली थी।
  • कहीं पर 5, 12, 24 और 2 अंकों का प्रयोग किया जाता था।

लेकिन 1 से 9 तक की गिनती को जब मान्यता मिलने लगी, तब अंकों की ओर ध्यान दिया जाने लगा। उस समय 9 के बाद 11 लिखने की परंपरा थी, लेकिन उत्तर वैदिक काल में शून्य की खोज ने गणित की एक नई क्रांति ला दी।


भारत का योगदान: अंक और शून्य की खोज

भारत ने केवल अंकों का आविष्कार नहीं किया, बल्कि शून्य की खोज करके विश्व को गणित की सबसे महत्वपूर्ण अवधारणा दी।

  • शून्य एक ऐसा अंक है जो किसी भी संख्या को गुणा करने पर उसे समाप्त कर देता है।
  • किसी भी संख्या में शून्य जोड़ने से उसका मान नहीं बदलता।
  • शून्य की न कोई लंबाई होती है, न चौड़ाई और न ही गहराई।

इसलिए संपूर्ण विश्व भारत का ऋणी है, क्योंकि भारतीय गणितज्ञों ने गणित को नई ऊंचाइयों पर पहुंचाया।


प्राचीन भारत में गणित और शून्य का विकास

प्रारंभिक वैदिक काल (1200-600 ईसा पूर्व)

2500 साल पुराने संस्कृत ग्रंथों में भारतीय गणित की समृद्ध परंपरा के प्रमाण मिलते हैं।

  • इस काल में दशमलव प्रणाली, अंकगणित और रेखागणित के नियम विकसित हो चुके थे।
  • मंदिरों के निर्माण और यज्ञ वेदियों की रचना के लिए सटीक गणितीय सूत्र बनाए गए थे।
  • इस काल में दस की घात वाली संख्याओं का उपयोग किया जाता था, जो अरबों तक पहुंच जाती थीं।

यह दिखाता है कि भारतीय गणितज्ञों ने बड़ी संख्याओं की गणना में महारत हासिल कर ली थी।


उत्तर वैदिक काल (1000-500 ईसा पूर्व)

इस काल में गणित का भारत में अधिक विकास हुआ।

  • इस समय उपनिषदों की रचना हुई और वेदों पर आधारित नए दर्शन विकसित हुए।
  • रेखागणित के सूत्रों का विकास हुआ, जो शुल्व सूत्रों में उपलब्ध हैं।
  • बोधायन, आपस्तंब और कात्यायन जैसे महान गणितज्ञों ने शुल्व सूत्रों की रचना की।

बोधायन शुल्व सूत्र में वह प्रमेय शामिल है, जिसे आज पाइथागोरस प्रमेय के नाम से जाना जाता है। यह प्रमेय भारत में 3000 साल पहले खोजी जा चुकी थी।


बौद्धकाल और शून्य की अवधारणा

बौद्धकाल में दुनिया अपने ज्ञान के चरम पर थी।

  • तक्षशिला, नालंदा और विक्रमशिला विश्वविद्यालयों में गणित और खगोलशास्त्र का अध्ययन किया जाता था।
  • यूनानी दार्शनिकों ने केवल 4 तत्व माने थे, लेकिन भारतीय दार्शनिकों ने आकाश को भी तत्व माना और उसे शून्य के रूप में समझाया।
  • पाइथागोरस ने भी इस विचार को स्वीकार किया कि आकाश (नथिंग) वास्तव में शून्य है।

इससे यह सिद्ध होता है कि भारतीयों ने शून्य की अवधारणा को बौद्धकाल में ही समझ लिया था।


शून्य के प्राचीनतम प्रमाण

पिंगलाचार्य (200 ईसा पूर्व)

  • पिंगलाचार्य ने छंद शास्त्र की रचना की थी।
  • उन्हें द्विअंकीय (बाइनरी) गणित का जनक माना जाता है।
  • पिंगलाचार्य को शून्य का आविष्कारक भी माना जाता है।

उनके छंदों में गणितीय दृष्टिकोण से द्विअंकीय गणना के तत्व पाए जाते हैं, जो आज के कंप्यूटर गणित का आधार हैं।


बख्शाली पाण्डुलिपि (200 ईसा पूर्व - 300 ईस्वी)

  • 1881 में खैबर क्षेत्र के बख्शाली गांव में यह पाण्डुलिपि मिली।
  • यह भोजपत्र पर लिखी गई थी।
  • इसमें शून्य का जिक्र है।
  • यह ग्रंथ ईसा पूर्व 800 से 500 तक के वैदिक गणित के बाद के रूप को दर्शाता है।

यह प्रमाणित करता है कि शून्य की खोज प्राचीन भारतीय गणितज्ञों ने ही की थी।


गुप्तकाल और शून्य का विकास

गुप्तकाल को भारत का स्वर्ण युग कहा जाता है।

  • इस काल में ‘शून्ययुक्त दशमिक स्थानमान संख्या प्रणाली’ विकसित हुई।
  • ज्योतिष, वास्तु, स्थापत्य और गणित के नए प्रतिमान स्थापित किए गए।
  • भव्य इमारतों और मंदिरों में गणितीय अंकों के साथ शून्य को भी अंकित किया गया।

इस समय भारतीय गणित यूरोप और अरब तक पहुंचने लगा।


प्रसिद्ध भारतीय गणितज्ञ और शून्य का योगदान

आर्यभट्ट (476 ईस्वी)

  • आर्यभट्ट ने ‘आर्यभटीय’ नामक ग्रंथ लिखा।
  • उन्होंने दशमिक प्रणाली का विस्तृत वर्णन किया।
  • "स्थानात् स्थानं दशगुणं स्यात" का सिद्धांत दिया, जिससे दशमलव प्रणाली प्रमाणित होती है।

हालांकि, वे शून्य के आविष्कारक नहीं थे, लेकिन उन्होंने इसे गणना में शामिल किया।


ब्रह्मगुप्त (598-668 ईस्वी)

  • उन्होंने ‘ब्रह्मस्फुट सिद्धांत’ में शून्य की परिभाषा दी।
  • उन्होंने अ-अ = 0 का नियम स्थापित किया।
  • उन्होंने लिखा कि किसी भी संख्या को शून्य से गुणा करने पर उत्तर शून्य ही आता है।

ब्रह्मगुप्त ने शून्य के गणितीय नियमों की व्याख्या की, जिससे गणित को नई दिशा मिली।


भास्कराचार्य (1114-1185 ईस्वी)

  • उन्होंने बताया कि किसी संख्या को शून्य से विभाजित करने पर उत्तर अनंत आता है।
  • उन्होंने यह भी सिद्ध किया कि अनंत से कुछ घटाने या जोड़ने पर कोई प्रभाव नहीं पड़ता।

उनकी इस खोज ने गणित को और अधिक उन्नत बनाया।


शून्य का विश्व में प्रसार

भारतीय गणित अरब जगत में पहुंचा और वहां से यूरोप में फैला।

  • अरब में इसे ‘सिफर’ कहा गया।
  • लैटिन, इटालियन और फ्रेंच में यह ‘सिफर’ से बदलकर ‘जीरो’ बना।
  • 12वीं शताब्दी में यूरोप ने भारतीय शून्य प्रणाली को अपनाया।

आज विश्वभर में गणितीय गणना भारतीय शून्य और दशमलव प्रणाली पर आधारित है।


निष्कर्ष

शून्य केवल एक संख्या नहीं, बल्कि गणित की आधारशिला है।

  • भारतीय गणितज्ञों ने न केवल इसे खोजा, बल्कि गणितीय नियमों में इसे परिभाषित भी किया।
  • दशमिक प्रणाली और स्थानमान पद्धति के बिना आधुनिक गणना संभव नहीं होती।
  • अरब और यूरोप ने भारतीय गणितीय प्रणाली को अपनाकर इसे विश्वव्यापी बना दिया।

इसलिए, जब भी आप गणित के किसी प्रश्न का उत्तर ‘0’ पाते हैं, तो याद रखें कि यह भारत की महान देन है।


"शून्य नहीं होता, सब कुछ बन जाता है"